首页> 外文OA文献 >Perceptual quality estimation of H.264/AVC videos using reduced-reference and no-reference models
【2h】

Perceptual quality estimation of H.264/AVC videos using reduced-reference and no-reference models

机译:使用减少参考和无参考模型的H.264 / AVC视频的感知质量估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Reduced-reference (RR) and no-reference (NR) models for video quality estimation, using featuresthat account for the impact of coding artifacts, spatio-temporal complexity, and packet losses, are proposed. Thepurpose of this study is to analyze a number of potentially quality-relevant features in order to select the mostsuitable set of features for building the desired models. The proposed sets of features have not been used in theliterature and some of the features are used for the first time in this study. The features are employed by the leastabsolute shrinkage and selection operator (LASSO), which selects only the most influential of them toward per-ceptual quality. For comparison, we apply feature selection in the complete feature sets and ridge regression onthe reduced sets. The models are validated using a database of H.264/AVC encoded videos that were subjec-tively assessed for quality in an ITU-T compliant laboratory. We infer that just two features selected by RRLASSO and two bitstream-based features selected by NR LASSO are able to estimate perceptual qualitywith high accuracy, higher than that of ridge, which uses more features. The comparisons with competingworks and two full-reference metrics also verify the superiority of our models.
机译:提出了使用考虑了编码伪像,时空复杂度和数据包丢失影响的特征的视频质量估计的缩减参考(RR)模型和无参考(NR)模型。这项研究的目的是分析许多可能与质量相关的特征,以便选择最合适的特征集来构建所需的模型。拟议中的特征集尚未在文献中使用,本研究中首次使用了某些特征。这些功能由最小绝对收缩和选择运算符(LASSO)使用,该运算符仅选择对感知质量最有影响力的功能。为了进行比较,我们在完整的特征集中应用特征选择,并对简化的集合应用岭回归。使用H.264 / AVC编码视频的数据库对模型进行验证,该数据库在符合ITU-T的实验室中进行了主观质量评估。我们推断,只有RRLASSO选择的两个特征和NR LASSO选择的两个基于比特流的特征才能够以较高的精度估算感知质量,这比使用更多特征的ridge更高。与CompetitionWorks和两个全参考指标的比较也证明了我们模型的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号